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By 
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The equality of the ionization potential and the orbital energy of the electron being 
removed is investigated using a general SCF theory for open-shell configurations. The signi- 
ficance of virtual orbital energies is investigated in the same context. 

Die Gleichsetzung yon Ionisierungsenergie und entsprechender Einelektronenenergie wird 
fiir Konfigurationen mit unabgeschlossenen Schalen mit Hilfe einer allgemeinen SCF-Theorie 
gepriift. In diesem Rahmen wird auch die Bedeutung von virtuellen Einelektronenenergien 
untersucht. 

L'6quation entre le potentiel d'ionisation et l'6nergie orbitale de l'61ectron correspondant 
est examinee g l'aide d'une th6orie g6n6rale SCF pour les configurations g couches ouvertes. 
Au cadre de cette th6orie, la signification des 6nergies d'orbitales inoccup6es est 6tudi6e. 

Introduction 
The determination of the electronic energy by a variational calculation was 

formerly restricted to those systems that the available SCF formalisms were 
capable of handling, namely, closed-shell and some open-shell configurations 
[2, 6, 7]. As a result the energies of many open-shell systems have been approxi- 
mated by calculations based upon the nearest tractable configuration. Thus, the 
ionization potential has been approximated by the energy of the pertinent occupied 
orbital in the parent closed-shell system; excited state functions have been 
formed using virtual orbitals. 

Recently more general methods have been advanced, in particular, ttUZI~AGA'S 
method [3], in which SCF improvement of one orbital at a time is carried out, 
and the general SCF theory of Brass and FlCAOA [1] which formulates the problem 
with a simultaneous variation of all the orbitals. 

In this paper the statement of Koopmans' theorem in the context of the 
general SCF theory is investigated and the applicability of virtual orbital energies 
is discussed. 

The SCF Formalisms 

For closed-shell systems ROOT~AA~ [6] has given the Hartree-Fock equations 
for orbitals ~'i as: 

where F is the Hartree-Fock operator: 

F =  H +  Z~ (2 Jk - -  Kk) 
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with H the one:electron operator composed of the kinetic energy operator and the 
operators expressing the attractive field of the nuclei of the system. Js  and Ks are 
the coulomb and exchange operators defined in terms of the/cth orbital. The 2" and k 

p 

summations are over all occupied orbitals. The sji are the I,agrangian multipliers 
introduced to satisfy the orthouormality constraints imposed upon the orbitals. 
A suitable unitary matrix can be found which diagonalizes the matrix of Lagran- 
gian multipliers and transforms the orbitals into a new set while leaving the 
operator F invariant. This is possible only for closed-shell orbital sets. The 
Hartree-Fock equations then become: 

with : 

being defined as the orbital energy. The total electronic energy is [7] : 

the summation extending over all occupied orbitals, with: 

In open-shell systems the unitary transformation technique cannot be used 
to solve the problem presented by the off-diagonal Lagrangian multipliers. 
Following lines sinfilar to those indicated by I~OOT~AAN [7] and Ht~z~Ao~t [3], 
BIRss and ~eAOA [1] derive the Hartree-Fock equations: 

F~ - ~ = ~ ~7~ 0j5 " 

where the summation extends over all occupied orbitals bearing the symmetry 
species designation # and subspecies designation cr The Hartree-Fock operator is : 

F~ ~ = 1~ (H + ~ j / ~  ~j + s  ~ ~ 1~ 
with* : 

The/~ are fractional occupancy parameters allowing for incomplete occupancy 
of a set of degenerate orbitals. The a and b parameters are functions of the state 
of the configuration. Due to these parameters the Hartree-Fock operators are 
defined with respect to a single orbital. The J s  and Ks operators are similar to 
those defined in the ROOT~AA~ formalism. 

Recognizing that  : 

the Uartree-~ock equations are rewritten as: 

r~ ~ ~ -  ~j I ~ } < ~ [ F~,~ I ~ } + l ~ } ( ~ [ r~ ~ 1 ~  } = ~ 0~? . 

~Bmss and F~ac-~ then define a general coupling operator R z~ such that  : 

This requires that :  

* This expression differs slightly from that  given in [1]. See reference [5]. 
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with : 

all summations being taken over occupied orbitals bearing symmetry  designation 
H~ 0/. 

The orbital energies are defined by: 

The expression for the total  electronic energy is : 

E (R) = -~.=/~ (V~= § g f  ~) . 

The Ionization Potential 

The ionization potential is defined as E t . -  Eg, where Et and Eg are the total 
energies of the ionized and ground states respectively. Koopmans '  theorem [4] 
approximates this difference by the orbital energy of the electron removed, on the 
assumption tha t  the orbitals are unchanged by the change in configuration. The 
expression of the theorem for a closed-shell system in the formalism of BI~ss and 
FI~AG~ may  be readily found by properly relating some of their formulae to those 
of ROOT~r l~rom equation (24) of reference [1] one has for the closed-shell tha t  : 

But  : 

so tha t  e~:=  Oi~i: for the closed-shell. The equation of Brass and F n ~  for the 
total  energy of a closed-shell then becomes : 

E (R) = _.r~.: (0~? + H~ ~) = Z ~ , :  ( R : +  H~ ~) . 

One thus obtains E(R)=  E(F), as one must, an explicit s tatement tha t  the total  
energies by  the two methods are identical for the closed-shell. 

When the orbitals of the ionized and ground states are identical R o o ~ x  [6] 
has shown that,  for ionization from orbital v : 

E~ ( F ) -  e~ = E~ (F) . 

Since E~ ( 8 ) =  E a (R) and =v = Ovv for a closed-shell, one has: 

Er ( R ) -  Ovv = E~ (8) ; 
but:  

( R ) - -  = (27) 

and hence Ei (R)---- E~ (8). Thus: 

E~ ( 8 ) -  E~ ( 8 ) =  e~ 

E e ( R ) -  Et (R)= Ovv 

are identical statements and the latter may  be taken as the statement of IKoop- 
marls' theorem for a closed-shell configuration in the formalism of the R operator. 

The expression of Ee - Et in terms of the ground state parameters when both 
states, or the ground state, are open-shell configurations cannot be shown in 
general without explicit reference to the spin-states involved. This can be readily 
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seen, for if the energies are written in terms of integrals over the Hartrce-Fock 
operators, terms such as: 

will occur. Expanding the integrals gives: 
/Z v __ - -  1~,~/m,g (2 -'~' ~ t). ~ '  ~ h~. ~ '  ~ 

In  general, to express this difference in terms of the ground state parameters 
only, it would be necessary to relate the ionized state a, b and / parameters to 
those of the ground state. Such a general relation can be found for the / para- 
meters since they are independent of spin-states and depend on occupancy only. 
On the other hand the relation of the sets of a and b parameters is highly dependent 
upon the spin character of both states. For example, compare the parameters 
required for the description of the 1 s "~ 2 pa aS and 2p states of the ion arising 
from the common aP ground state of the carbon atom. The relation between 
the / parameters is identical whereas that between the sets of a and b parameters 
cannot be simply generalized. Hence it is suggested that a demonstration of 
Koopmans' theorem be undertaken in the context of the particular case considered. 

One such case is that  of Li-Li+. Here : 

E ~ = 2 H ~ + H 2 + I ~ + I ~ 2  

Et = 2 H~ § I l l  , 

(since 122 = 0), so that : 

Since the orbital energy is: 

one obtains : 

Ey--  E t =  H2 + I12 . 

~ 2  = 0 2 2 / / 2  = H 2  "~- I 1 2  

E g -  E~ = ~2 �9 

Virtual Orbital Energies 
The virtual orbital energies from the closed-shell formalism of ROOTItAAZr [6] 

could be used in the calculation of excitation energies assuming that all orbitals 
are the same in both ground and excited states. However, it can be shown that this 
application is possible only for certain cases in the formalism of the general SCF 
theory. 

In the definitions of the R "~ and r~ ~ operators the subscripts refer to occupied 
orbitals and the summations extend over occupied orbitals only. In fact, the 
development makes no reference to unoccupied orbitals. However, in the LCAO 
context both occupied and unoccupied orbital coefficients are obtained and, 
whether occupied or not, all corresponding orbitals must be orthogonal. 

Letting ~v~ ~ be an unoccupied orbital, one has that : 

R~ i ~ > = ~J ~F t ~o~ ~ > 

- sj,~ I ~F  > < ~F 1 F F  I ~F  > < ~F I ~;t > + 
+ ~j l_u~ 1 ~ > < ~  ~ I ~ > .  
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Because of the range of the summations,  j, k ~ m, and by virtue of  the ortho. 
tona l i ty  : 

= I > -  o ,  
the equation reduces to :  

I n  an a t t empt  to determine a quant i ty  similar to tha t  obtained for occupied 
orbitals, one forms : 

# c t  _ _  I 

Again or thogonal i ty  causes the right hand  side go vanish so tha t  the Or~n for 
unoccupied orbitals are all zero simply on the grounds of or thogonal i ty;  they  
cannot  be considered as being related to proper orbital energies. 

Virtual orbital energies, a l though not  obtainable as the expectat ion value of 
the R ~ operator,  m a y  be found for some cases by  the use of the F~ ~ operators 
which occur in the formulat ion of {he R ~ .  For  occupied orbitals one has : 

i.e., the 0~/~ for the occupied orbital ~0~ ~ can be obtained with equal val idi ty as the 
expectat ion value of  R ~ or F~ ~. F rom the definition of orbital energy one has:  

Taking the definition of virtual orbital energy to mean the expectat ion value 
of tha t  operator which m a y  be used to evaluate the occupied orbital energies, one 
can use exact ly the same form to determine the virtual orbital energies. The 
problem is then  to choose the F{'~//~. I n  closed-shell configurations all such ope- 
rators are identical and no uncer ta in ty  arises; even in some open-shell config- 
urations the -F~//{ " m a y  be the same within a given symmet ry  species (e. g., the 
operators for the Is and 28 orbitals in the configurations is12s12pn). However,  in 
situations where the F~//~ are different within a symmet ry  species, the selection 
of  the proper operator cannot  be made. Some fur ther  step must  be taken, such as 
using an operator averaged within a symmet ry  species. 
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